Identifying the Metabolic Differences of a Fast-Growth Phenotype in Synechococcus UTEX 2973

نویسندگان

  • Thomas J. Mueller
  • Justin L. Ungerer
  • Himadri B. Pakrasi
  • Costas D. Maranas
چکیده

The photosynthetic capabilities of cyanobacteria make them interesting candidates for industrial bioproduction. One obstacle to large-scale implementation of cyanobacteria is their limited growth rates as compared to industrial mainstays. Synechococcus UTEX 2973, a strain closely related to Synechococcus PCC 7942, was recently identified as having the fastest measured growth rate among cyanobacteria. To facilitate the development of 2973 as a model organism we developed in this study the genome-scale metabolic model iSyu683. Experimental data were used to define CO2 uptake rates as well as the biomass compositions for each strain. The inclusion of constraints based on experimental measurements of CO2 uptake resulted in a ratio of the growth rates of Synechococcus 2973 to Synechococcus 7942 of 2.03, which nearly recapitulates the in vivo growth rate ratio of 2.13. This identified the difference in carbon uptake rate as the main factor contributing to the divergent growth rates. Additionally four SNPs were identified as possible contributors to modified kinetic parameters of metabolic enzymes and candidates for further study. Comparisons against more established cyanobacterial strains identified a number of differences between the strains along with a correlation between the number of cytochrome c oxidase operons and heterotrophic or diazotrophic capabilities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2

Photosynthetic microbes are of emerging interest as production organisms in biotechnology because they can grow autotrophically using sunlight, an abundant energy source, and CO₂, a greenhouse gas. Important traits for such microbes are fast growth and amenability to genetic manipulation. Here we describe Synechococcus elongatus UTEX 2973, a unicellular cyanobacterium capable of rapid autotroph...

متن کامل

Deciphering cyanobacterial phenotypes for fast photoautotrophic growth via isotopically nonstationary metabolic flux analysis

Background Synechococcus elongatus UTEX 2973 is the fastest growing cyanobacterium characterized to date. Its genome was found to be 99.8% identical to S. elongatus 7942 yet it grows twice as fast. Current genome-to-phenome mapping is still poorly performed for non-model organisms. Even for species with identical genomes, cell phenotypes can be strikingly different. To understand Synechococcus ...

متن کامل

Adjustments to Photosystem Stoichiometry and Electron Transfer Proteins Are Key to the Remarkably Fast Growth of the Cyanobacterium Synechococcus elongatus UTEX 2973

At the genome level, Synechococcus elongatus UTEX 2973 (Synechococcus 2973) is nearly identical to the model cyanobacterium Synechococcus elongatus PCC 7942 (Synechococcus 7942) with only 55 single nucleotide differences separating the two strains. Despite the high similarity between the two strains, Synechococcus 2973 grows three times faster, accumulates significantly more glycogen, is tolera...

متن کامل

CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973

BACKGROUND As autotrophic prokaryotes, cyanobacteria are ideal chassis organisms for sustainable production of various useful compounds. The newly characterized cyanobacterium Synechococcus elongatus UTEX 2973 is a promising candidate for serving as a microbial cell factory because of its unusually rapid growth rate. Here, we seek to develop a genetic toolkit that enables extensive genomic engi...

متن کامل

Active Transport of Inorganic Carbon Increases the Rate of O(2) Photoreduction by the Cyanobacterium Synechococcus UTEX 625.

Chlorophyll a fluorescence of Synechococcus UTEX 625 was quenched during the transport of inorganic carbon, even when CO(2) fixation was inhibited by iodoacetamide. Measurements with a pulse modulation fluorometer showed that at least 75% of the quenching was due to oxidation of Q(a), the primary acceptor of photosystem II. Mass spectrometry revealed that transport of inorganic carbon increased...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017